
HAL Id: hal-02153203
https://hal.inria.fr/hal-02153203v4

Submitted on 24 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Investigating Placement Challenges in Edge
Infrastructures through a Common Simulator (extended

version)
Adwait Bauskar, Anderson da Silva, Adrien Lebre, Clement Mommessin,

Pierre Neyron, Yanik Ngoko, Yoann Ricordel, Denis Trystram, Alexandre van
Kempen

To cite this version:
Adwait Bauskar, Anderson da Silva, Adrien Lebre, Clement Mommessin, Pierre Neyron, et al.. In-
vestigating Placement Challenges in Edge Infrastructures through a Common Simulator (extended
version). [Research Report] RR-9282, INRIA. 2020. �hal-02153203v4�

https://hal.inria.fr/hal-02153203v4
https://hal.archives-ouvertes.fr

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
92

82
--

FR
+E

N
G

RESEARCH
REPORT
N° 9282
Feb 2020

Project-Teams DATAMOVE,
STACS

Investigating Placement
Challenges in Edge
Infrastructures through a
Common Simulator
Adwait Bauskar, Anderson Da Silva, Adrien Lebre, Clément
Mommessin, Pierre Neyron, Yanik Ngoko, Yoann Ricordel Denis
Trystram, Alexandre Van Kempen,

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Investigating Placement Challenges in Edge
Infrastructures through a Common Simulator

Adwait Bauskar, Anderson Da Silva, Adrien Lebre, Clément
Mommessin, Pierre Neyron, Yanik Ngoko, Yoann Ricordel

Denis Trystram, Alexandre Van Kempen,

Project-Teams DATAMOVE, STACS

Research Report n° 9282 — Feb 2020 — 20 pages

Abstract: Scheduling computational jobs with data-sets dependencies is an important challenge
of edge computing infrastructures. Although several strategies have been proposed, they have been
evaluated through ad-hoc simulator extensions that are, when available, usually not maintained.
This is a critical problem because it prevents researchers to –easily– perform fair comparisons
between different proposals.
In this research report, we propose to address this limitation by presenting a simulation engine
dedicated to the evaluation and comparison of scheduling and data movement policies for edge
computing use-cases. Built upon the Batsim/SimGrid toolkit, our tool includes a plug-in system
that allows researchers to add new models in order to cope with the diversity of edge computing
devices. Moreover, it includes an injector that allows the simulator to replay a series of events
captured in real infrastructures. We demonstrate the relevance of such a simulation toolkit by
studying 2 scheduling strategies with 4 data movement policies on top of a simulated version of the
Qarnot Computing platform, a production edge infrastructure based on smart heaters. We chose
this use-case as it illustrates the heterogeneity as well as the uncertainties of edge infrastructures.
Our ultimate goal is to gather industry and academics around a common simulator so that efforts
made by one group can be factorised by others.

Key-words: Edge, Simulation, Scheduling algorithms, Data movements

Investigations sur les challenges de placement dans une
infrastructure Edge á travers un simulateur commun

Résumé : Ordonnancer efficacement des travaux de calcul avec des dépendances de données
est un des plus importants challenges des infrastructures de calcul edge. Bien que plusieurs
stratégies ont été proposées, elles ont toutes été évaluées avec des extensions de simulateur ad-hoc
qui sont, s’ils sont rendues disponibles, habituellement pas maintenus. C’est un problème critique
parce que cela empêche les chercheurs de – facilement – conduire des évaluations équitables entre
différentes stratégies proposées.

Dans ce rapport de recherche, nous proposons d’adresser cette limitation en présentant un sim-
ulateur dédié à l’évaluation et la comparaison de politiques d’ordonnancement et de mouvement
de données pour le cas d’usage du calcul edge. Construit au dessus de Batsim/SimGrid, notre
outil inclus un système de plug-in qui permet aux chercheurs d’ajouter des nouveaux modèles
pour faire face à la diversité des appareils de calcul edre. De plus, cet outil inclut un injecteur
qui permet au simulateur de rejouer une série d’évènement capturés au sein d’une infrastruc-
ture réelle. Nous démontrons la pertinence d’un tel outil de simulation en étudiant 2 stratégies
d’ordonnancement avec 4 politiques de mouvements de données sur une version simulée de la
plateforme de Qarnot Computing, une infrastructure de production edge basée sur des radiateurs
intelligents. Nous avons choisi ce cas d’usage car il illustre l’hétérogénéité et l’incertitude d’une
infrastructure de l’edge.

Notre but ultime est de rassemble les industriels et les académiques autour d’un simulateur
commun afin que les efforts faits par un groupe puissent être factorisés par d’autres.

Mots-clés : Edge, Simulation, Algorithmes d’ordonnancement, Mouvements de données

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 3

1 Introduction

The proliferation of Internet of Things (IoT) applications [7], as well as the advent of new tech-
nologies such as Mobile Edge computing [3], and Network Function Virtualisation [18] (NFV)
have been accelerating the deployment of Cloud Computing-like capabilities at the edge of the
Internet. Referred to as the Edge Computing [21] paradigm, the main objective is to perform
on demand computations close to the place where the data are produced and analysed to mit-
igate data exchanges and to avoid too high latency penalties [28]. Among the open questions
our community should address to favour the adoption of such infrastructures is the computa-
tion/data placement problem, i.e., where to transfer data-sets according to their sources and
schedule computations to satisfy specific criteria. Although several works have been dealing with
this question [4, 8, 12, 19, 22, 25, 26], it is difficult to understand how each proposal behaves
in a different context and with respect to different objectives (scalability, reactivity, etc.). In
addition to having been designed for specific use-cases, available solutions have been evaluated
either using ad hoc simulators or through limited in-vivo (i.e., real-world) experiments. These
methods are not accurate and not representative enough to, first, ensure their correctness on real
platforms and, second, perform fair comparisons between them.

Similarly to what has been proposed for the Cloud Computing paradigm [16], we claim that
a dedicated simulator toolkit to help researchers investigate Edge scheduling strategies should
be released soon. Indeed, we claim that using placement simulators for Cloud Computing is
not appropriate to study Edge challenges. Besides resource heterogeneity, network specifics
(latency, throughput), and workloads, Edge Computing infrastructures differ from Cloud Com-
puting platforms because of the uncertainties: connectivity between resources is intermittent,
storage/computation resources are more heterogeneous and can join or leave the infrastructure
at any time, for an unpredictable duration. In other words, a part of the infrastructure can be
isolated or unavailable for minutes/hours preventing accessing some data-sets or assigning new
computations.

In this article, we present several extensions we implemented on top of the Batsim/SimGrid
toolkit [10, 13] to favour fair evaluations and comparisons between various scheduling strategies
for Edge infrastructures. In particular, we developed an external module to allow injecting in the
simulation any type of unforeseen events that could occur (e.g., a machine became unavailable at
time t). We also implemented a Storage Controller to supervise all transfers of data-sets within
the simulated platform. We chose to rely on Batsim/SimGrid instead of any other available Edge
simulators [23, 27] for the following reasons:

• Batsim has been especially designed to test and compare resource management policies
in distributed infrastructures. In other words, the design of Batsim enforces researchers
to use the same abstractions and, thus, favours straightforward comparisons of different
strategies, even if they have been implemented by different research groups;

• Batsim promotes separation of concerns and enables the decoupling between the core simu-
lator and the scheduler. Moreover, Batsim provides APIs in different languages (including
Python and C++) that makes the development of a scheduling strategy accessible for a
large number of researchers;

• The accuracy of the internal models (computation and network) of SimGrid has been
already validated [11, 24] and extensively used [2].

• SimGrid provides a plug-in mechanism, which is of particular interest to deal with the
diversity of Edge devices: it lets researchers add new models of specific Edge facilities
without requiring intrusive modifications into the simulation engine.

RR n° 9282

4 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

By extending Batsim to the Edge paradigm, we target a tool that will enable researchers/engineers
to re-evaluate major state-of-the-art load balancing strategies. In particular, we think about
scheduling strategies that have been proposed in desktop computing platforms, volunteer com-
puting and computational grids [5, 6] as these infrastructures have several characteristics in
common with Edge platforms.

To demonstrate the relevance of our proposal, we discuss several simulations we performed for
the Qarnot Computing [1] use-case. The infrastructure of Qarnot Computing is composed of 3,000
disk-less machines (smart heaters) distributed across several sites in France. Each computing
resource can be used remotely as traditional Cloud Computing capabilities or locally to satisfy
data processing requirements of IoT devices deployed in the vicinity of the computing resource.
As such, the Qarnot platform is a good example of Edge infrastructure, with computing units
and mixed local/global jobs with data-sets dependencies.

The strategies presented in this article are simple. They aim to illustrate what can be done
without important efforts. More advanced strategies can be analysed in the same manner. We
are, for instance, investigating more advanced strategies that consider pulling data-sets from
other Edge resources rather than from the centralised storage system of the Qarnot Computing
infrastructure.

The rest of the report is structured as follows. Section 2 gives an overview of the Bat-
sim/SimGrid toolkit and the extensions we implemented. Section 3 presents the Qarnot Com-
puting use-case and Section 4 describes how we simulated this case study. Section 5 discusses a
first analysis of different scheduling strategies for the Qarnot platform. Section 6 presents the
related work. Conclusion and future works are given in Section 7.

2 A Dedicated Simulator for Edge Platforms

Our proposal relies on extensions developed in the Batsim/SimGrid toolkit. Released in 2016,
Batsim [13] delivers a high-level API on top of SimGrid [10] to ease the development and simu-
lation of resource management algorithms. Thus, our proposal relies on tools already validated
by our community.

2.1 Operational Components

We discuss in this section the role of the different components, namely SimGrid, Batsim, the
decision process, and their interactions.

2.1.1 SimGrid.

SimGrid [10] is a state-of-the-art simulation toolkit that enables the simulation of distributed
systems. SimGrid’s relevance in terms of performance and validity has been backed-up by many
publications [2]. In addition to providing the program to be evaluated, performing simulations
with SimGrid requires writing a platform specification and interfacing the program to simulate.
SimGrid enables the description of complex platforms, such as hierarchical infrastructures com-
posed of many interconnected devices with possibly highly heterogeneous profiles, such as the
edge ones.

2.1.2 Batsim and the decision process.

Batsim [13] is a simulator engine built on top of SimGrid. It proposes a specialised API to help
researchers design and analyse jobs and I/O scheduling systems. Such systems are for instance

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 5

Batch Schedulers a.k.a., Resource and Jobs Management Systems, in charge of managing re-
sources in large-scale computing centres. Batsim allows researchers to simulate the behaviour
of a computational platform in which workloads are executed according to the rules of a deci-
sion process. It uses a simple event-based communication interface: as soon as an event occurs,
Batsim stops the simulation and reports what happened to the decision process. The decision
process embeds the actual scheduling code to be evaluated. In other words, to simulate a given
scheduling algorithm, an experimenter has to implement this decision process. Comparing dif-
ferent algorithms consists in switching between different decision processes, which is easy in
Batsim. Internally, the decision process (i) reacts to the simulation events received from Batsim,
(ii) takes decisions according to the given scheduling algorithm, and (iii) drives the simulated
platform by sending back its decisions to Batsim. Batsim and the decision process communicate
via a language-agnostic synchronous protocol. We used Batsim’s Python API to implement our
decision process. For more details on Batsim and SimGrid mechanisms, we invite the reader to
refer to Chapter 4 of Poquet’s manuscript [20].

2.2 Extensions

To ease the study of scheduling strategies for Edge platforms, we have been working on a couple
of extensions for Batsim. We present in this section those already available, namely the events
injector and the storage controller. Modifications made in Batsim1 and its Python API2 for this
work are available in branches of the repositories. Besides, we present the plug-in mechanism of
SimGrid that researchers can leverage to provide models of particular Edge devices.

2.2.1 External events injector.

To simulate the execution of an Edge infrastructure, which by essence is subject to very frequent
unexpected or unpredictable changes, our simulator offers the opportunity to inject external
events on demand. Those events impact the behaviour of the platform during the execution and
thus the choices of the scheduling strategy. For example, one would be interested in studying the
behaviour and resilience of a scheduling policy when a range of machines becomes unexpectedly
unavailable for a period of time, due to a failure or action (e.g., from a local user) occurring at
the edge.

The mechanism we implemented replays external events that occurred at a given time, and
lets the main process of Batsim handle them. Batsim updates the state of the platform, and
then forwards the events to the decision process. An event is represented as a JSON object
composed of two mandatory fields: a timestamp that indicates when the event should occur,
and the type of the event. Depending on the type of event, other fields can complement the
event description, such as for instance the name of the unavailable resource, the new value of an
environment parameter such as the network bandwidth, or anything of interest to the decision
process. External events are injected in Batsim by one of its internal processes, which reads from
an input file the aforementioned JSON objects (one per line).

This event injection mechanism is generic by concept: users can define their own types of
event and associated fields, which will be forwarded to the decision process without requiring
any modification in the code of Batsim.

1https://gitlab.inria.fr/batsim/batsim/tree/temperature
2https://gitlab.inria.fr/batsim/pybatsim/tree/temperature

RR n° 9282

6 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

2.2.2 Storage Controller.

The Storage Controller is a Python module that manages the storage entities and supervises
data transfers during the simulation.

At the beginning, the Storage Controller reads an input file that contains the description of
each data-set (i.e., one JSON object per line describing whether a particular data set is present
or not on a given storage entity). During the simulation, the Storage Controller keeps track of
the on-going data transfers, the available data-sets in each storage entity and manages all aspects
related to caching policies of these entities. A simple API is exposed to the decision process to
ask, for example, a data-set to be copied in another storage or to retrieve the list of storage
having a copy of a given data-set.

2.2.3 SimGrid plug-ins.

When designing an Edge simulator, it is a nonsense to foresee all the models and devices that
may compose the platform. There are just too many. To cope with this high heterogeneity, we
propose to leverage the SimGrid plug-ins capability that facilitates the implementation of new
models without requiring intrusive changes in the simulation engine.

We underline that, unfortunately, there is no generic manner of exposing information that
can be captured by new plug-ins to the scheduler. Hence, some modifications might be required
to extend the communication protocol of Batsim and exchange information between a particular
plug-in and the decision process, as explained in Section 4 for the case of the Qarnot platform.

3 Case Study: the Qarnot Computing Platform

We present in this section the Qarnot Computing infrastructure we use to demonstrate the
relevance of our simulation tool.

3.1 Infrastructure Overview

Qarnot Computing has been incorporated in 2010 to develop “a disruptive solution able to turn
IT waste heat into a viable heating solution for buildings”. The infrastructure is distributed
in housing buildings, offices and warehouses across several geographical sites in France. As of
writing this report, the whole platform is composed of about 1,000 computing devices hosting
about 3,000 disk-less machines, and is growing quickly. On each of the 20 geographical sites, there
is a NFS-based storage with a few TB of capacity that enables disk-less machines to manipulate
data. In a typical configuration a computing machine has a 1 Gbps uplink to a common switch,
which then has up to 40 Gbps uplink to the NFS server. The latency between a computing
machine and the NFS server is of the order of 1 ms. The various deployment sites are connected
to the Internet using either a public or enterprise ISP, with characteristics varying from 100
Mbps to 1 Gbps symmetric bandwidth to the Internet, and about 10 ms latency to French data
centres used by Qarnot to host control and monitoring services, the central storage system, and
gateways to its distributed infrastructure.

On a daily basis, Qarnot computing solution processes from a few hundred to several thou-
sands of batch jobs and thousands of cores are provisioned for dedicated corporate customers,
and up to tens of GB of data are replicated from central storage to Edge Computing sites.

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 7

Computing requests

QNode

QBox

QRad

Heat requests

Storage
Server

Figure 1: Scheme of the Qarnot platform.

3.2 Platform Organisation and Terminology

The jobs and resources manager of the Qarnot platform is based on a hierarchy of 3 levels, as
shown in Figure 1: the Qnode-, the QBox - and the QRad -level. The QNode is a root node, a
“global” server that takes placement decisions for the whole platform. It can be viewed as a load
balancer for the platform. On the second level are the QBoxes, “local” servers in smart buildings
that take scheduling decisions locally on their own computing nodes. Each QBox is in charge of
a set of computing nodes, the QRads, which are composed of one or several disk-less computing
units denoted by QMobos.

Moreover, a centralised storage server is present at the QNode-level, while each QBox has
its own local storage disk. From a physical point of view, the QNode and the storage server are
in the Cloud while QBoxes are distributed over smart buildings of several cities, while QRads
among a building are distributed in different rooms.

The Qarnot platform receives two types of user requests: requests for computing and requests
for heating. The computing requests describe the workload to be executed on the platform. They
are made by users that first upload input data needed to execute their jobs (named QTasks) to
the centralised server and upload a Docker image either to the centralised server or the Docker
Hub. Then, they submit the QTasks to the QNode. A QTask can be decomposed as a bag of
several instances that share the same Docker image and data dependencies, but with different
command arguments. This can be used for example to process each frame of a given movie, with
one frame or a range of frames per instance.

The heating requests are made by inhabitants that can turn on and off the smart heaters in
their homes, or set a target temperature for rooms to be reached as soon as possible. Since the
computing units in a smart heater are unavailable when cooling is necessary, and are available
otherwise, such changes increases the heterogeneity challenges of an Edge infrastructure: the
computation capacity does not simply appear or disappear but also vary according to the heating
needs.

RR n° 9282

8 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

SimGrid

Master host

Batsim QNode
Scheduler

Compute
hosts

Events
Platform
Workload

Batsim
socket

PyBatsim

Storage
Controller

QBox
Schedulers

Decision process

Input dataInternal
communication

Legend

QBoxes

 QBox
 Scheduler

Storage

QRads

 QNode
 Scheduler

QNode

CEPH

Local
Storage

Sensors QMobos

Qarnot platform

Workload
Simulated platformReal platform

Data-sets

Figure 2: Comparison between the real and simulated Qarnot platform.

3.3 Principle of the Actual Scheduling Policy

QTasks submitted to the platform are scheduled onto QMobos through two steps. The first step
takes place at the QNode-level. The QNode greedily dispatches as much instances of the QTasks
as possible on QBoxes, depending on the amount of QMobos available for computation on each
QBox. The second step takes place at the QBox-level. Upon receiving instances of a QTask, the
QBox will select and reserve a QMobo for each instance and fetch from the storage server each
missing data dependency before starting the instances.

Notice that, at all times, a Frequency Regulator runs on each QRad to ensure that the ambient
air is close to the target temperature set by the inhabitant, by regulating the frequencies of the
QMobos and completely turning off a QRad if it is too warm. Moreover, whenever there is no
computation performed on the QMobos while heating is required, “dummy” compute-intensive
programs are executed to keep the QRad warm.

Modelling such an infrastructure to identify improvement opportunities and analyse new
scheduling strategies is something possible with our Batsim extensions.

4 Simulated Platform

We detail in the following how we modelled and instantiated the Qarnot use-case with our
simulation toolkit.

As temperature plays an important role in the platform and the scheduling decisions, we
leveraged the plug-in mechanism of SimGrid to implement our own model. Built on top of the
existing energy plug-in [15], our plug-in computes the temperature of a QRad and its ambient air
from the energy consumption of the QMobos and other physical parameters, such as the thermal

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 9

conductivity and mass of the QRad.
Figure 2 depicts the real and the simulated Qarnot platforms. The schedulers of the QNode-

and QBox-level were implemented using Batsim’s Python API. The decision process is a Python
process holding one instance of the QNode scheduler and the Storage Controller, and one instance
of the QBox scheduler for each QBox of the simulated platform.

A log extractor was build to generate all the input files to feed Batsim and the decision
process from real logs of the Qarnot platform, for a given time period. These files describe the
platform, the workload and data dependencies, the list of data-sets present in the storage server
and all events that are mandatory to simulate the Qarnot system. It is noteworthy that due to
users’ privacy reasons, we cannot provide access to the log extractor and the Qarnot logs used
for the experiments.

4.1 Platform Description

The description of the platform is an XML file fed to SimGrid. This file describes the whole
platform to simulate and keeps the same hierarchical structure of the Qarnot platform. Each
QMobo is simulated as a single core host (representing a machine) as they are the only computing
resources of the platform. A host hold information such as its unique identifier, the list of
speeds and corresponding power usage of its processor, and additional values such as the thermal
coefficients required by the temperature plug-in. QMobos belonging to the same QRad are
aggregated in the same SimGrid zone (representing a network). Similarly, all QRads of a same
QBox are aggregated in the same zone, as well as all QBoxes of the QNode, with additional
information for the bandwidth and latency of the links between two QRads, or between a QBox
and the QNode.

The management of storage spaces is done by adding special hosts which handle the storage
role, with information about the storage capacity. Thus, in each QBox zone, there is one addi-
tional storage host for the QBox disk. Similarly, there is one storage host in the QNode zone to
represent the storage server.

Finally, a dummy master host is added to host the process of Batsim.

4.2 Workload Description

The workload is represented by a JSON file fed to Batsim that contains a list of job and profile
descriptions. Job descriptions are defined by the user requests and contain: the id, the submission
time, and the job profile to use. Profile descriptions represent how a job should be simulated,
plus other specific information, and contain: the type of the job to simulate, the number of flops
to compute, the job priority and the list of data-sets required as inputs.

Each instance of a given QTask can run independently from the others, so we transcribed
each instance as one Batsim job and profile. Instances belonging to the same Qtask have the
same data-set dependencies in their profile.

The list of data-sets is also described as a list of JSON objects (one per line). Each data-set
is represented by the unique identifier of the data-set and its size in bytes. This file is read by the
decision process and fed to the Storage Controller at the beginning of the simulation to initialise
the state of the storage server.

4.3 External Events Description

The external events to replay during the simulation are represented by a list of JSON objects
(one per line). As discussed in Section 2.2.1, each event has two mandatory fields: the timestamp
when the external event occurred and the type of the event.

RR n° 9282

10 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

For the simulation of heating requests, each change of a QRad target temperature is simu-
lated as an external event with additional fields for the name of the QRad and the new target
temperature. Besides, we take into account the outside temperature of the cities where the
QRads are deployed. This value is measured on a one-hour basis and injected as another exter-
nal event. We modified Batsim to relay these external events to the plug-in, and we modified
the communication protocol to periodically forward the ambient air temperature of each QRad
to the scheduler.

Since we want to simulate an exact time period, we also added a special external event that
enforces the simulation to stop at a particular time.

5 Simulations

Two kind of experiments have been performed to investigate the Qarnot Computing use case.
The first aimed to compare the standard scheduling policy used in the real Qarnot platform
with a policy based on locality of the data-sets. The second experiment enabled us to study the
impact of replication policies for the data-sets that are uploaded on the platform (i.e., how they
affect the scheduling decisions). The code of the evaluated schedulers is available in a dedicated
branch of Batsim’s Python API repository3.

5.1 Data/Job Scheduling Policies

Along with the real Standard Qarnot scheduler that serves as a baseline for our experiments
(see Section 3.3), we implemented a variant using the data-locality to take scheduling decisions
at the QNode-level, denoted by LocalityBased. Upon dispatching instances, LocalityBased gives
priority to the QBoxes already having the data-set dependencies of the QTask on their storage
disk. This variant aims at taking benefit from the data locality and reducing the data transfers.

To evaluate the impact of data placement on the scheduling decisions, we also implemented
three variants of replication policies upon the submission of QTasks. The question we want to
answer with these variants is whether replicating data-sets can achieve significant improvements,
and at which cost? The first two variants, denoted by Replicate3 and Replicate10, respectively
replicates the data-dependencies of a submitted QTask on the 3 and 10 least loaded QBox disks
among the 20 QBoxes in the platform, before applying the LocalityBased scheduling algorithm.
These two variants aim at reducing the waiting time of the instances by providing more QBox
candidates for the LocalityBased dispatcher. The last variant, denoted by DataOnPlace, instan-
taneously copies all data-set dependencies on all QBox disks upon the submission of a QTask.
Even if it is unrealistic, this variant aims at visualising the behaviours of the standard scheduling
policy without having any impact caused by the data transfers.

5.2 Simulated Workloads

We extracted 4 different simulation inputs corresponding to logs of the Qarnot platform for a
1-week period each. Since the simulation and the scheduling algorithms are deterministic, we
ran one simulation with each combination of scheduler and workload. Each simulation took less
than 40 minutes to run, with about 15% of the time spent in the decision process.

The considered workloads contained between 5,000 and 9,000 instances and between 40 and 60
different data-sets. In each workload, there was at least one data-set used by 50% of the instances,
and up to 9 data-sets were used by 700 instances in workload 2 (as depicted in Figure 3). This

3https://gitlab.inria.fr/batsim/pybatsim/tree/temperature

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 11

0 10 20 30 40
Data set IDs

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f i
ns

ta
nc

es

907

14

263
168

1719
111

16108 126 14

237

745

1857

318

2934

180

10

164165
261

894

4 4 4 205

697

9 6

1222

2330

5 2

849

2 1
6895150

5

Number of data_sets: 43
 Number of instances: 5990

Figure 3: Number of instances using each dataset for the second workload.

information shows that using replication for data-sets should improve the quality of the schedules
compared to standard scheduling decisions.

In our simulations, we compared the quality of the produced schedules using the waiting time
of the instances, the total number of transfers that occurred, and the total data transferred in
GB. For one instance, the waiting time denotes the difference between its starting and submission
times.

5.3 Simulation Results

Figures 4 to 7 shows, respectively for each worklaod, the waiting time distribution for each
scheduling strategy separated in 3 intervals for better clarity. Figure 8 shows the amount of
manipulated data we observed through simulations for the four workloads. Note that, in the
following, the analysis of the results is focused on workload 3.

5.3.1 Impact of data locality.

As depicted on Figures 4 to 7, for each scheduler more than 50% of the instances waited less than
one second before starting their execution. The last column shows that a few instances waited
a long time before starting their execution (around 1,455 or 2,910 seconds). This is due to the
long transfer time of one of their data dependencies that was as large as 36 GB, while other
data-sets were smaller than 5 GB. Comparing the behaviour of Standard and LocalityBased, we
do not observe a big difference in the distribution of the waiting times. This is confirmed by the

RR n° 9282

12 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

Total = 5943

Total = 6033

Total = 6454

Total = 6602

Total = 6952

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0.0 2.5 5.0 7.5 10.0

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

0

2000

4000

6000

waiting time ∊ [0, 10]

N
um

be
r o

f i
ns

ta
nc

es

Total = 1391

Total = 1302

Total = 881

Total = 733

Total = 398

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

10 150 300 450 600

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

0

100

200

300

400

500

waiting time ∊ (10, 600]

Total = 16

Total = 15

Total = 15

Total = 15

Total = 0

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

750 1000 1250 1500

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

waiting time ∊ (600, +∞)

Figure 4: Waiting time distribution (in seconds) of all instances of the first workload.

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 13

Total = 3928

Total = 4119

Total = 4189

Total = 4384

Total = 5292

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0.0 2.5 5.0 7.5 10.0

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

0

2000

4000

waiting time ∊ [0, 10]

N
um

be
r o

f i
ns

ta
nc

es

Total = 2051

Total = 1867

Total = 1799

Total = 1597

Total = 691

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

10 150 300 450 600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

waiting time ∊ (10, 600]

Total = 5

Total = 4

Total = 2

Total = 2

Total = 0

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

600 1200 1800 2400 3000

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

waiting time ∊ (600, +∞)

Figure 5: Waiting time distribution (in seconds) of all instances of the second workload.

RR n° 9282

14 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

Total = 3393

Total = 3427

Total = 3642

Total = 3853

Total = 4025

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0.0 2.5 5.0 7.5 10.0

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

0

1000

2000

3000

4000

waiting time ∊ [0, 10]

N
um

be
r o

f i
ns

ta
nc

es

Total = 2087

Total = 2058

Total = 1843

Total = 1632

Total = 1481

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0 200 400 600

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

0

100

200

300

waiting time ∊ (10, 600]

Total = 26

Total = 21

Total = 21

Total = 21

Total = 0

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

600 1200 1800 2400 3000

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

0
5

10
15
20

waiting time ∊ (600, +∞)

Figure 6: Waiting time distribution (in seconds) of all instances of the third workload.

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 15

Total = 6478

Total = 6690

Total = 6861

Total = 7667

Total = 8392

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0.0 2.5 5.0 7.5 10.0

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

0

2000

4000

6000

8000

waiting time ∊ [0, 10]

N
um

be
r o

f i
ns

ta
nc

es

Total = 2361

Total = 2154

Total = 1983

Total = 1177

Total = 460

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

0 100 200 300

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

0

200

400

600

waiting time ∊ (10, 600]

Total = 13

Total = 8

Total = 8

Total = 8

Total = 0

DataOnPlace

Replicate10

Replicate3

LocalityBased

Standard

600 1200 1800 2400 3000

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

0.0

2.5

5.0

7.5

10.0

12.5

waiting time ∊ (600, +∞)

Figure 7: Waiting time distribution (in seconds) of all instances of the fourth workload.

RR n° 9282

16 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

Workload: 1 Workload: 2 Workload: 3 Workload: 4

0

500

1000

To
ta

l d
at

a
tra

ns
fe

rre
d

(G
B)

Workload: 1 Workload: 2 Workload: 3 Workload: 4

0

500

1000

N
um

be
r o

f t
ra

ns
fe

rs

Schedulers Standard
LocalityBased

Replicate3
Replicate10

DataOnPlace

Figure 8: Number of transfers and total data transferred in GB.

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 17

average value over all instances of 54.7 seconds for Standard and 54.4 for LocalityBased.
Regarding the amount of data manipulated Figure 8 shows, the results from the Locali-

tyBased scheduler is as expected: dispatching instances on QBoxes already having the data-set
dependencies on their disk permits to reduce the number of transfers by about 40%, and between
30 and 65% the total data transferred, compared to Standard.

To conclude, considering data locality decreases the amount of data transfer as expected but
does not seem to be satisfactory enough to significantly improve waiting times.

5.3.2 Transferring data has a cost.

Replicating data-sets permits to reduce the mean waiting times of the instances but at a cost
of more data transfers, as depicted in Figure 8. More precisely, the mean waiting time of
the instances decreases from 54.4 to 47.3, 40.3 and 30 seconds respectively for LocalityBased,
Replicate3, Replicate10 and the unrealistic DataOnPlace strategies. While these results look
encouraging, it is important to take into account the associated overhead in terms of data transfer:
from 120 GB to 376 GB for Replicate3, 652 GB for Replicate10 and 1,110 GB for DataOnPlace.
This respectively corresponds to an overhead in terms of data transfer of 3.1x, 5.4x and 9.3x.

Consequently, it is not clear whether replicating data-sets at a high ratio is a valid approach.
On the first hand, taking into account only the data locality is not sufficient to have good waiting
time performance (LocalityBased). On the second hand, it is crucial to control data-set exchanges
as they have an impact on the overall performance. For instance, it may make sense to have
a replication ratio that is dynamic according to the popularity of the data-set and the status
of the platform. In other words, it is crucial to also consider the time spent in data transfer
before taking scheduling decisions. This is critical as the size of data-sets should be increased
with respect to IoT-based scenarios envisioned by Qarnot Computing. In this regard, we plan to
extend the Storage Controller to estimate the transfer time of a data-set to a given storage entity
at a certain time. This information is valuable for the schedulers to decide when triggering data
transfers and on which QBoxes. Besides, we plan to leverage our proposal to evaluate whether
exchanging data-sets directly between QBoxes can help us reduce the data transfer time.

Finally, we recall that our goal through this study was not to find the best scheduling algo-
rithm but to illustrate the use of our simulation toolkit on a concrete scenario, and to demonstrate
how such a simulator would help to drive the design of scheduling and data placement strategies.
Capturing the aforementioned observations in the Qarnot Computing production platform would
have been impossible.

6 Related Simulation Tools

We described in this report a novel simulation tool for easily designing and testing scheduling
strategies on Edge Computing platforms. We motivated the effort of building a new simulator
using adequate tools for modelling the processing and memory units and the network topology.
We discuss briefly below the main competitors and argument for our simulator.

Some simulators have constraints that would prevent us to correctly simulate a platform such
as the Qarnot one. For example, EmuFog [17] does not support hierarchical fog infrastructures,
whereas Qarnot infrastructure is inherently hierarchical.

Other simulators such as iFogSim [14], EdgeCloudSim [23] and IOTSim [27], are simulation
frameworks that enable to simulate Fog or Edge Computing infrastructures and execute simulated
applications on top of it. These solutions are close to our work. However they have been built
on top of the CloudSim toolkit [9]. Although widely used to study algorithms and applications,
CloudSim is based on a top-down approach of cloud environments. This is efficient to deliver

RR n° 9282

18 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

the right abstractions to the end-users but unfortunately lacks of validations of the low-level
models. We believe it is an important issue as it may return invalid observations. Besides, the
Batsim/SimGrid toolkit is the only one that has been designed to study and compare scheduling
challenges in an easy manner. In other simulators, including CloudSim, researchers have to
implement a lot of business logic that is redundant each time you want to investigate a scheduling
policy. Batsim/SimGrid delivers all this logic in a generic manner, making it more versatile and
user-friendly for researchers/engineers.

7 Concluding Remarks and Future Steps

We presented in this report extensions we made to the Batsim/SimGrid framework to evaluate
scheduling and data placement policies in Edge Computing infrastructures. Its integration into
a simulator leads to a complete management system for Edge Computing platforms that focuses
on the evaluation of scheduling strategies, taking into account both jobs and data.

While more extensions are still under development, the presented toolkit already enables
researchers/engineers to easily evaluate existing load balancing and placement strategies. It may
also serve at developing and testing new strategies thanks to its modular and clear interface.

To assess the interest of such simulator, we instantiated the toolkit to simulate the whole
Edge platform of the Qarnot Computing company based on smart heaters. As a first use case,
we investigated four scheduling strategies and compared them to the actual policy implemented
in the Qarnot platform. We showed that replication of data-sets is an interesting approach to
reduce job waiting times but requires additional investigations to determine how the replication
ratio can be computed according to several metrics, such as data-set popularity, size, etc. To help
researchers move forward on this question, we are currently extending the Storage Controller to
monitor additional information such as the number of on-going transfers or an estimate of the
time to transfer a particular data-set from one source to one destination.

Besides, we envision to design an automatic and probabilistic injector of machine and network
failures based on statistical studies of the platform logs and learning techniques. Being able to
model the dynamic of Edge infrastructures would be also an important added-value for our
framework to capture side effects of such events on scheduling strategies.

Acknowledgements.

This work was supported by the ANR Greco project 16-CE25-0016-01 and by AUSPIN with the
International Student Exchange Program from the University of São Paulo.

Inria

Investigating Placement Challenges in Edge Infrastructures through a Common Simulator 19

References

[1] Qarnot computing. https://www.qarnot.com

[2] SimGrid publications. http://simgrid.gforge.inria.fr/Publications.html

[3] Ahmed, A., Ahmed, E.: A survey on mobile edge computing. In: 2016 10th International
Conference on Intelligent Systems and Control. pp. 1–8 (Jan 2016)

[4] Ait Salaht, F., Desprez, F., Lebre, A., Prud’Homme, C., Abderrahim, M.: Service Placement
in Fog Computing Using Constraint Programming. In: SCC 2019 - IEEE International
Conference on Services Computing. pp. 1–9. IEEE (Jul 2019)

[5] Allcock, B., Bester, J., Bresnahan, J., Chervenak, A.L., Foster, I., Kesselman, C., Meder, S.,
Nefedova, V., Quesnel, D., Tuecke, S.: Data management and transfer in high-performance
computational grid environments. Parallel Computing 28(5), 749–771 (2002)

[6] Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: proceed-
ings of the 5th IEEE/ACM International Workshop on Grid Computing. pp. 4–10. IEEE
Computer Society (2004)

[7] Atzori, L., Iera, A., Morabito, G.: The internet of things: A survey. Computer networks
54(15), 2787–2805 (2010)

[8] Brogi, A., Forti, S.: QoS-Aware Deployment of IoT Applications Through the Fog. IEEE
Internet of Things Journal 4(5), 1185–1192 (Oct 2017)

[9] Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., Buyya, R.: Cloudsim: A toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Software Practice and Experience 41, 23–50 (01 2011)

[10] Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, Scalable, and
Accurate Simulation of Distributed Applications and Platforms. Journal of Parallel and
Distributed Computing 74(10), 2899–2917 (Jun 2014)

[11] Degomme, A., Legrand, A., Markomanolis, G., Quinson, M., Stillwell, M.L., Suter, F.:
Simulating MPI applications: the SMPI approach. IEEE Transactions on Parallel and Dis-
tributed Systems 28(8), 14 (Aug 2017)

[12] Donassolo, B., Fajjari, I., Legrand, A., Mertikopoulos, P.: Fog Based Framework for IoT
Service Provisioning. In: IEEE CCNC (Jan 2019)

[13] Dutot, P.F., Mercier, M., Poquet, M., Richard, O.: Batsim: a Realistic Language-
Independent Resources and Jobs Management Systems Simulator. In: 20th Workshop on
Job Scheduling Strategies for Parallel Processing (May 2016)

[14] Gupta, H., Vahid Dastjerdi, A., Ghosh, S., Buyya, R.: ifogsim: A toolkit for modeling and
simulation of resource management techniques in internet of things, edge and fog computing
environments. Software: Practice and Experience (06 2016)

[15] Heinrich, F.C., Cornebize, T., Degomme, A., Legrand, A., Carpen-Amarie, A., Hunold, S.,
Orgerie, A.C., Quinson, M.: Predicting the Energy Consumption of MPI Applications at
Scale Using a Single Node. In: Cluster 2017. IEEE (Sep 2017)

RR n° 9282

20 Bauskar, Da Silva, Lebre, Mommessin, Neyron, Ngoko, Ricordel, Trystram, Van Kempen

[16] Lebre, A., Pastor, J., Simonet, A., Südholt, M.: Putting the next 500 vm placement al-
gorithms to the acid test: The infrastructure provider viewpoint. IEEE Transactions on
Parallel and Distributed Systems 30(1), 204–217 (Jan 2019)

[17] Mayer, R., Graser, L., Gupta, H., Saurez, E., Ramachandran, U.: Emufog: Extensible and
scalable emulation of large-scale fog computing infrastructures. In: FWC. pp. 1–6. IEEE
(2017)

[18] Mijumbi, R., Serrat, J., Gorricho, J.L., Bouten, N., De Turck, F., Boutaba, R.: Network
function virtualization: State-of-the-art and research challenges. IEEE Communications Sur-
veys & Tutorials 18(1), 236–262 (2015)

[19] Naas, M.I., Parvedy, P.R., Boukhobza, J., Lemarchand, L.: iFogStor: An IoT Data Place-
ment Strategy for Fog Infrastructure. In: ICFEC’17. pp. 97–104 (2017)

[20] Poquet, M.: Simulation approach for resource management. (Approche par la simulation
pour la gestion de ressources). Ph.D. thesis, Grenoble Alpes University, France (2017),
https://tel.archives-ouvertes.fr/tel-01757245

[21] Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: Vision and challenges. IEEE
Internet of Things Journal 3(5), 637–646 (Oct 2016)

[22] Skarlat, O., Nardelli, M., Schulte, S., Borkowski, M., Leitner, P.: Optimized IoT Service
Placement in the Fog. SOC 11(4), 427–443 (Dec 2017)

[23] Sonmez, C., Ozgovde, A., Ersoy, C.: Edgecloudsim: An environment for performance eval-
uation of edge computing systems. In: 2017 Second International Conference on Fog and
Mobile Edge Computing (FMEC). pp. 39–44 (May 2017)

[24] Velho, P., Schnorr, L., Casanova, H., Legrand, A.: On the Validity of Flow-level TCP Net-
work Models for Grid and Cloud Simulations. ACM Transactions on Modeling and Computer
Simulation 23(4) (Oct 2013)

[25] Xia, Y., Etchevers, X., Letondeur, L., Coupaye, T., Desprez, F.: Combining Hardware
Nodes and Software Components Ordering-based Heuristics for Optimizing the Placement
of Distributed IoT Applications in the Fog. In: Proc. of the ACM SAC. pp. 751–760 (2018)

[26] Yousefpour, A., Patil, A., Ishigaki, G., Jue, J.P., Kim, I., Wang, X., Cankaya, H.C., Zhang,
Q., Xie, W.: QoS-aware Dynamic Fog Service Provisioning (2017)

[27] Zeng, X., Garg, S.K., Strazdins, P., Jayaraman, P.P., Georgakopoulos, D., Ranjan, R.:
IOTSim: a Cloud based Simulator for Analysing IoT Applications. J. Syst. Archit. 72(C),
93–107 (Jan 2017)

[28] Zhang, B., Mor, N., Kolb, J., Chan, D., Lutz, K., Allman, E., Wawrzynek, J., Lee, E.,
Kubiatowicz, J.: The Cloud is Not Enough: Saving IoT from the Cloud. In: HotStorage
(2015)

Inria

RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

